Timbre: A Decentralized Forum with
Blockchain-based Distributed Data Store

Guyu Fan Xin Tong Raluca-Georgia Diugan Jay Chen
{gf940, xt405, rgd248, jc2977}@nyu.edu

Abstract

Much of the public discourse today takes place online, especially on social media plat-
forms. However, these platforms are almost always subject to censorship. For instance,
posts on Facebook and tweets on Twitter may be removed if they are deemed inappro-
priate by the service providers, and threads and comments on Reddit may be locked or
deleted at will by subreddit moderators. Centralized storage of user content makes it
convenient to monopolize moderation power, and the fact that the average user only has
a partial view of all content exacerbates the problem. In response to these issues, we
design and implement Timbre, a Blockchain-based distributed data storage system for
decentralized online forums. In Timbre, forum content is distributed to different nodes,
and a blockchain that records the complete history of user data storage and retrieval
transactions is disseminated across the peer-to-peer (P2P) network. We also introduce
the concept of blockchain epochs to prevent concentration of power in the system. Ul-
timately, we aim to provide an open, trustworthy and censorship-resistant system for
public online discourse.

Introduction

A Timbre forum is a decentralized online discussion platform where data storage is
distributed among participating nodes. A Timbre blockchain is the backbone of the
forum. It keeps track of forum posts and distributes rewards to nodes that contribute to
the forum. New forum posts are collected by miners and distributed to storage providers.
Information about forum post storage is recorded in the blockchain. As the forum grows,
its blockchain is extended.

Paper Outline

In the Timbre Design section, we give an extensive description of Timbre’s blockchain,
content management and economics design. In the Timbre Protocols section, we detail
the protocols for making posts, matching posts with storage providers, creating storage
deals, verifying storage deals and disseminating the blockchain. In the Timbre Anal-
ysis section, we present an analysis of our system design by answering questions about
significant design decisions on the blockchain structure, content storage and reward mech-
anisms. Finally, we conclude with Future Work and discuss improvements that can be
made to our system.

When transitioning to a new Epoch:

all accounts' balances are set to 0 dB

all active deals from the previous epoch expire
elected mining committee from last election round in ..., .
epoch E, carries over :
Storage Providers and Miners begin redeeming dBs
from epoch E, at a rate of x/r dBs per block, where x
is the node's balance during previous epoch

X

[J L g
T

Epoch Ej;: blocks By through By 3 Epoch Ej, 4

Deals: agreements between a Storage Provider
and Poster(s) to exchange storage for dB

Verifications: (challenge, proof) Proof of Storage
pairs issued by Miners in order to audit Storage
Provider's upholding of the deals

Retrieval Transactions: direct transfers of
balance from a Retriever to a Bandwidth Provider
following a content retrieval operation.

Votes: signed lists of candidates and amount of
stake a voting node assigns to each candidate.

Figure 1: Blockchain Design.

Timbre Design

In this section, we describe the overall design of Timbre without delving into too many
implementation details.

Roles

Nodes in the Timbre P2P network may take on one or more distinct roles. Posters submit
new posts to the forum, and these posts are stored by storage providers. Retrievers
download posts from bandwidth providers that serve the posts from their local cache.
Finally, miners are responsible for coordinating certain operations and recording the
results in order to extend the Timbre blockchain.

In the centralized setting, an average user of a forum would only be a poster and a
retriever. However, to ensure that Timbre functions smoothly, it is crucial that most
users also become storage providers and bandwidth providers, and a small number of
users become miners. Therefore, one of our central design goals is to build a set of
protocols that incentivize forum users to fulfill these necessary responsibilities.

Blockchain

Every Timbre forum is implemented on top of a blockchain (see figure 1), which acts as a
public ledger that keeps track of forum posts. The cryptocurrency (decibles) associated

Verification
+ Challenge: Challenge (as defined by PoS scheme)

+ Proof: Proof (as defined by PoS scheme)

Transaction

SenderID: <Array>byte
RecipientID: <Array>byte
nonce: <Array>byte
SiJggenaer: <Array>byte

+ + + +

Vote

+ Candidates: <Array>Candidate

+ Sigy: <Array>byte

Block

Deals: <Array>Deal
Verifications: <Array>Verification

Transactions: <Array>Transaction

+ o+ o+ o+

Votes: <Array>Vote

Figure 2: Block Structure.

with the blockchain rewards storage providers, bandwidth providers and miners for their
contributions to the network.

Block Structure

Each block is divided into four sections: storage deals, deal verifications, retrieval trans-
actions, and votes. Conceptually, a deal is an agreement between a storage provider and
one or more posters to exchange post storage for decibles. Deals are not permanent, and
a deal is active before it expires. Miners are responsible for sampling active deals on
the blockchain and checking if the storage providers are correctly storing the posts in
those deals. A miner generates a verification using a Proof of Storage scheme [1] for each
sampled active deal. The storage provider’s income depends on the success of the verifi-
cation. A retrieval transaction, similar to transactions in other cryptocurrency systems,
is a direct transfer of balance from one account to another. A retriever pays a bandwidth
provider by sending a retrieval transaction to the miners. Finally, nodes send votes to
the current mining committee to elect the next mining committee (mining committee is
defined in section 3.2.2). The block structure can be viewed in Figure 2.

Consensus

Most existing blockchain consensus algorithms operate under the assumption that honest
nodes own the majority of some resource in the network. For proof-of-work consensus,
that resource is hashing power; for proof-of-stake consensus it is token ownership. In
Timbre, we use Delegated Proof of Stake (DPoS), a variant of proof-of-stake consensus,
because DPoS typically has higher transaction throughput, achieves a greater degree of
centralization and is not as energy-intensive as proof-of-stake consensus [2].

In DPoS, an elected mining committee of < K4, (system parameter) miners is re-
sponsible for producing blocks. Any node can declare its candidacy for the mining com-

mittee. Any node with a positive decibel balance can vote by splitting its stake among
at least K,,,, candidates. The candidates that receive the top K,,.. stake and at least
a fixed fraction (1/s, system parameter) of the total stake in the network become the
mining committee. At the beginning of a new Timbre forum there may be < K,,,, nodes,
therefore the committee size could also be < K,,,.. As more nodes join the forum and
gain stake, the committee size will dynamically increase when a new node receives > 1/s
stake. In the case where no nodes receive > 1/s stake, K,,;, (system parameter s.t.
1 < Knin < Kpaz) number of nodes with the highest stakes get to be the next mining
committee.

Once a committee is elected, a mining round starts. A mining round is divided into
slots. Each slot lasts Ty (system parameter) seconds, and each elected miner is assigned
exactly one slot to produce a new block. A miner’s block is skipped if the miner fails to
produce the block within its assigned slot. After the mining round ends, votes are tallied,
a new committee is elected and the next mining round begins.

Epochs

Scalability and concentration of power are issues common to many blockchain systems.
In Timbre, the solution is to divide the blockchain into epochs. Each epoch contains a
fixed number (NN, system parameter) of blocks. Every node’s decibel balance is reset to
zero after the start of a new epoch, but epoch transitions do not affect mining committee
elections. In other words, miners with the most votes in the last round of the previous
epoch still become the first mining committee of the new epoch.

Since all storage deals expire at the end of the epoch during which they were made,
towards the end of every epoch system throughput in terms of posting is expected to
drop. Then at the beginning of the next epoch, posting rate will gradually go back to
normal as nodes earn new tokens.

A node may redeem a fixed fraction (1/r, system parameter) of its decibels from the
previous epoch at a fixed rate by being a miner or a storage provider in the new epoch.
Suppose that a node had = decibels in the previous epoch. Then at each block in the
new epoch, the node may redeem z/rN decibels if the node is the current miner or the
storage provider for an active deal.

Network

A P2P network provides two basic functionalities required by every Timbre forum: broad-
casting and one-to-one messaging. A node may, depending on the use case, broadcast
a message globally or only locally to other nearby nodes. For instance, a miner should
broadcast a new block globally, while a storage provider should only advertise its price
locally to avoid congesting the network. A node may also send a one-to-one message to
some other node in the network. For example, a poster should send its PostRequest
directly to the current mining committee.

Timbre uses a Distributed Hash Table (DHT) for both communication patterns. The
DHT-based broadcast protocol proposed by [3] is well suited for both global and local
broadcasts, and the DHT itself serves as a natural routing table for one-to-one messaging.
To prevent spamming in the network, nodes should implement rate limiting and blacklist
mechanisms.

Some operations in the network is time-sensitive. For instance, the mining committee

needs to agree on the exact start and end times of each mining slot. The Network Time
Protocol (NTP) may be used to synchronize time between different nodes.

Only K,,;, number of nodes are needed to bootstrap a Timbre forum. The bootstrap-
ping nodes can announce the forum to others in whichever way they like, but in particular
they can submit their addresses and forum information to the central directory of publicly
known forums that we Timbre developers maintain. The bootstrappers can later publish
more known addresses in their network, and new nodes can join by contacting the set of
available addresses.

Logically speaking, every Timbre forum maintains its own network independent of
other forums, but in practice, a single node may participate in multiple forums, resulting
in a sparsely connected mega-network of all Timbre nodes.

Content Management

The contents that a Timbre forum contains are user-generated posts. In this subsection,
we introduce post creation, aggregation, storage and retrieval procedures in a Timbre
network.

Posts

There are two kinds of posts in Timbre: root posts and reply posts. A root post is not
a reply to any existing posts in the forum and creates a new thread, while a reply post
is a reply to some existing post and therefore belongs to an existing thread. Root posts
and reply posts are handled differently in Timbre, but they both go through the same
lifecycle.

First, a poster broadcasts its post in its neighborhood and sends a PostRequest
to the mining committee. A miner then forwards the PostRequest to an appropriate
storage provider. After receiving the storage provider’s confirmation, the miner records
a Deal containing the PostRequest in the new block. While the deal is active, miners
periodically check if the storage provider is faithfully storing the post, and retrievers
may reach out to the storage provider to download the post. After the deal expires, the
storage provider is no longer obligated to store the post. However, there might still be
nodes caching the post locally on their machines, so it is still possible to retrieve a post
even though the deal has already expired.

Storage

Storage providers offer storage in chunks. Each chunk is M (system parameter) bytes
and is dedicated to the storage of a particular thread. When a storage provider accepts
a new root post, it allocates a chunk for the thread created by that root post. Miners
will direct all future reply posts under that thread to the same storage provider until the
chunk is filled. When the chunk is full, the next reply post will trigger another chunk
allocation from either the same storage provider or some other storage provider.

At any given time, at most one storage provider is responsible for storing reply posts in
a particular thread, and that storage provider is that thread’s primary storage provider.
Note that a thread may have no primary storage providers at all if the thread’s posts
perfect fill all the storage chunks. In this case, the storage provider that filled its chunk
most recently is called the previous primary storage provider.

Each storage provider has a total capacity, which is the maximum amount of storage
that it can provide. The collection of all chunks allocated by the storage provider is called
its committed storage. The collection of all deals stored by the storage provider is called
its used storage.

Each poster also stores its own posts. However, self-storage is not recorded on the
blockchain as separate deals; it is only inferred from the poster identity field in the post
request, and thus is not enforced by the system.

Retrieval

Bandwidth providers, like storage providers, also advertise their prices by local broad-
casts. But while storage providers are compensated by storage deals, bandwidth providers
earn decibels from retrieval transactions. Retrieval transactions are made on good faith
and should be aggregated over time to keep the blockchain small. If a retriever fails to
pay its due, the retrieval provider can simply blacklist that retriever and reject its future
requests.

In Timbre, we assume that retrievers access forum content by threads. A retriever
learns of existing threads in a Timbre forum by examining the storage deals in the
blockchain. Once the retriever locates the deals of a particular thread, it may retrieve
the thread by asking storage providers and posters or by locally broadcasting a retrieval
request in the network.

A thread’s most natural bandwidth providers are its storage providers. Storage
providers also act as tracker nodes by maintaining a list of recent retrievers for that
thread. If a storage provider has limited bandwidth or is not storing the thread because
the deal has expired, then it can still redirect the retrieval request to several recent re-
trievers. If a storage provider is offline, then the retriever can either reach out to the
individual posters in a thread, or broadcast its retrieval request locally to look for a
nearby node with a cache of the thread.

Economics

In a Timbre forum, nodes accumulate and redistribute its decibels while carrying out
the tasks of its roles. The blockchain records all valid transactions of the cryptocurrency,
therefore each node can compute everyone’s balance from the chain.

Reward Types

Upon mining a new block, the miner of the Timbre blockchain gets all but the last one
of the following rewards by system inflation:

— A fixed block reward (b, system parameter) for creating the new block.

— transaction fees, a fixed percentage (¢, system parameter) of the value of each
storage deal and retrieval transaction it includes in its block.

— A fixed verification reward (v, system parameter) for including each successful deal
verification in its block.

— A portion of its total amount to redeem from the last epoch (if any).

e ®

"' g Qm O “I E‘ SPs broadcast StorageOffer
’
;

lz‘ Send PostBroadcast to Neighborhood .. Storage Provider
S

lI‘Send PostRequest to Mining Committee —1 AT - _

[4] a | Verify RequestList

Send RequestList Confirmation

P S Send RequestList to SP
Qo
RO
Ve Q)

Mining Committee of N miners

Add PostRequest to RequestPool:

If Root: find Match and create new Thread
Else: add PostRequest to respective RequestList
(see Matching Protocol Section)

ThreadlD | RequestList

Prepare Verification, Lock and send Deal to Chain

Send AuthTags to SP

RequestPool

Figure 3: Summary of Posting, Matching and Verification Setup Protocol.

Intuitively, storage providers are paid from storage deals and bandwidth providers
are paid from retrieval transactions. Posters and retrievers do not earn anything, so they
have to also take on one or more of the rewarded roles to fully participate in the system.

Balance Calculation

Each Timbre node calculates and stores all node balances up to the latest block it knows.
Notably, all payments related to a storage deal happen block by block until that deal
expires; others happen instantly at the block they are included in. Therefore, once a block
is verified, the included block rewards, verification rewards and retrieval transactions are
deducted from the payers’ balances (if not system inflation) and added to the receivers’
in full. As for storage deals, the deal payment is also deducted in full from the poster’s
balance at once. Then at each following block, if the deal is verified successfully, the
storage provider and the deal-making miner get their rewards for that block, and the
storage provider gets partially redeemed; otherwise, no rewards are given, the storage
provider does not get redeemed and the poster gets a refund for that block.

Protocol

This section describes various Timbre protocols in detail. Unless otherwise stated, prices
are decibels per unit spacetime, duration is measured in number of blocks and timestamps
represent date and time. A specification of certain protocol Structures is shown in
figure 4.

StorageOffer

+ StorageProviderID: <Array>byte
+ Cost: int
+ MaxDuration: int

PostRequest
+ PosterID: <Array>byte
+ PostHash: <Array>byte

PostMetadata PosterID: <Array>byte

PostSize
ReplyTo: PostHash
Timestamp: Daytime

+ + + +

PostContent: String
MaxCost: int

Duration: int (root post only)

+ o+ o+ o+

S igrequest : <Array>byte

PostBroadcast

+ PostContent: String

PostMetadata + replyTo: PostHash
+ Timestamp: Daytime

+ S igbroadcast : <Array>byte

RequestList

+ Requests: <Array>PostRequest

RequestPool

+ RequestLists: <Array>RequestList

Deal

+ RequestList: RequestList (excluding PostContent in
each PostRequest)

+ Name: String
+ PublicKey : <Array>byte
+ Sigg: <Array>byte

AuthTags
- Tags: <Array>byte

Figure 4: Protocol Structures.

Posting Protocol

The poster follows the posting protocol to make a new post.

1.

To make a new root post, the poster must decide on MaxCost and Duration.
MaxCost is the highest price that the poster is willing to pay to store the post.
Duration is the poster’s desired post storage duration. The poster can detect price
fluctuations in the storage market by monitoring StorageOffers broadcasted by
storage providers and by examining recent Deals on the blockchain. This informa-
tion will help the poster choose an appropriate MaxCost.

To make a new reply post, the poster does not specify MaxCost or Duration if there
exists a primary storage provider for the reply post’s thread. The primary storage
provider is already storing some existing posts from the same thread. Therefore,
the cost will be the same as the cost of the existing posts, and Duration will be
adjusted to make the new reply post expire at the same time as the existing posts.
In the rare case where there is no primary storage provider for the reply post’s
thread, the poster is free to adjust the MaxCost but should still omit the Duration
to ensure that posts under the same thread stored across different chunks expire at
the same time.

The poster generates PostMetadata which contains PosterID, PostSize, Timestamp
and ReplyTo. PostSize is the size of PostContent and PostHash. If the new post
is a reply post, ReplyTo is set its parent post’s PostHash. ReplyTo is left empty
for a new root post.

The next steps apply to both root posts and reply posts.

4.

D.

The poster hashes PostContent and PostMetadata to PostHash.

The poster generates Sigrequest Dy signing MaxCost, Duration, PostMetaData and
PostHash.

The poster generates PostRequest containing PosterID, PostHash, PostMetaData,
PostContent, MaxCost, Duration and Sigrequest-

The poster sends the PostRequest to the mining committee.
The poster generates Sigyroaqcast DY signing PostContent and PostMetaData.

The poster generates and locally broadcasts PostBroadcast.

Matching Protocol

A miner uses the matching protocol to match PostRequests to storage providers. The
miner’s collection of PostRequest that have not been recorded on the blockchain yet is
that miner’s RequestPool.

1.

2.

The miner rejects a PostRequest if its PostSize, PostHash or Sigrequest is invalid.

The miner groups the PostRequests in its RequestPool by threads. Each group is
a RequestList.

3. Miners, like posters, also closely monitors the storage market. If a RequestList
contains a single root PostRequest, then the miner chooses a compatible storage
provider that minimizes the price difference between the StorageOffer and the
PostRequest. A compatible storage provider is one with a compatible StorageOffer.

4. If a RequestList contains one or more reply PostRequests under an existing
thread, then the miner must choose that thread’s primary storage provider if the
primary storage provider exists. In the rare case where there is no primary storage
provider, the miner is free to choose any compatible storage provider, but the miner
should give preference to the previous primary storage provider while minimizing
the price difference.

5. After choosing a storage provider, the miner knows the size of the remaining chunk
allocated the the thread. If the RequestList exceeds the thread’s remaining chunk
size, the miner truncates the RequestList so that it fills the remaining chunk and
discards the leftover PostRequests, which should be handled by the next miner.

6. The miner sends the (possibly truncated) RequestList to the chosen storage provider.
From here on, RequestList means the possibly truncated version.

7. The storage provider checks if every PostRequest in the RequestList has a valid
PostSize, PostHash and Sigrequest-

8. If the RequestList contains a single root PostRequest, the storage provider checks
if the PostRequest is consistent with its Storage0ffer. Then the storage provider
allocates a new chunk for the new thread.

9. If the RequestList contains one or more reply PostRequests, the storage provider
checks if all PostRequests belong to the same thread. Then the storage provider
checks if it is the primary storage provider for that thread. Finally, the storage
provider checks if there is still enough space left in the remaining chunk to store all
the incoming posts.

The next steps apply to both a root RequestList and a reply RequestList.

8. The storage provider aborts if any one of the previous checks fails. Otherwise, for
each PostRequest in the RequestList, the storage provider saves the PostHash
and PostContent to the chunk.

9. The storage provider generates Sigs, by signing the RequestList excluding the
PostContent of each PostRequest contained within.

10. The storage provider sends Sigg, back to the miner as confirmation.

Verification Setup Protocol

After receiving the storage provider’s confirmation, the miner must prepare the confirmed
RequestList for verification.

1. The miner generates PublicKey, SecretKey, and a random Name.

2. The miner processes the confirmed RequestList and generates the authentication
tags AuthTags.

10

3. The miner outsources AuthTags to the storage provider.

4. The miner combines the signed RequestList (excluding PostContent), the PublicKey
and the Name to make a Deal.

5. The miner records the Deal in the new block.

Figure 3 summarizes the posting, matching and verification setup protocol.

Deal Verification Protocol

Each miner in the mining committee is responsible for verifying up to D (system param-
eter) deals. Suppose the committee has ¢ miners, ¢ < K, and suppose there are a active
deals on the blockchain. Then the committee is responsible for verifying d = min(a, ¢x D)
deals and each miner is responsible d/c deals (if ¢ does not divide d, the remainder is
assigned to the miner with the first slot).

There is an integer weight associated with every active deal in the range {1...W},
where W is a system parameter. Every active deal is initialized with weight 1. During a
mining round, the weight for an active deal increases by 1 if its verification fails, decreases
by 1 if its verification succeeds and remains unchanged if it is not verified.

The d deals to be verified are sampled from the a active deals in a weighted uniform
way. The sampling process is publicly verifiable because it uses a prescribed pseudoran-
dom number generator (PRNG) seeded by the hash of the final block of the previous
round.

A miner follows the deal verification protocol to verify the active deals that are as-
signed to it.

1. The miner generates a Challenge for each active deal and sends the challenge to
the storage provider of that deal.

2. Upon receiving the Challenge, the storage provider generates a Proof, signs it,
and sends it back to the miner.

3. If the miner receives the Proof within T, (system parameter) seconds, the miner
combines it with the corresponding Challenge to generate a Verification. Oth-
erwise, the miner generates a Verification containing the Challenge only.

4. The miner records all Verifications in the new block.

A deal verification succeeds if and only if the correspondng Verification contains a
valid Proof.

Block Propagation Protocol

Nodes follow the block propagation protocol to distribute the latest blocks across the net-
work. The protocol depends on two operations: Ask(BlockHash, n) and Sync(blocks).
Ask is a request to retrieve a chain of up to n blocks starting from but not including the
block with BlockHash. Sync sends a chain of blocks to a designated receiving node, and
each Sync operation can carry at most Z (system parameter) blocks.

A node new to a Timbre network needs to fetch the entire blockchain. It begins by
locally broadcasting Ask (Null, Z). After receiving a Sync from one of its peers, the node
repeats Ask(BlockHash, Z) with updated BlockHash until it catches up with its peers.

11

A node also needs to fetch missing blocks after being offline for a period of time. It
first finds the block common to its local main fork and the current network main fork that
has the greatest height by doing a binary search on BlockHash with Ask(BlockHash, 0).
Then it repeats Ask(BlockHash, Z) with updated BlockHash until it catches up with
its peers.

In addition to responding to Asks, an up-to-date node should listen to new blocks
that are broadcasted by miners. If a new block cannot be directly appended to its local
blockchain, the node adds the block to its BlockPool of pending blocks. The node checks
its BlockPool periodically for pending blocks that can be appended its local blockchain.

Analysis

In this section, we analyze different aspects of Timbre to shed light on the challenges
in designing a system like Timbre and the compromises we made along the way. Our
analysis is presented in a Q&A format to illustrate the motivation behind our design
decisions.

Blockchain Design Analysis

e How does Timbre deal with long-range blockchain attacks? In contrast with Proof
of Work (PoW) systems, Proof of Stake (PoS) schemes are vulnerable to long-range
attacks. Because of significantly reduced computational expenses, PoS miners may
recreate entire blockchain forks and earn system currency from mining on multiple
chains over long periods of time (similar to the double spend attack). One pro-
posed solution in the case of PoS is Ethereum’s Slasher which uses economic and
reputation "slashing” methods in order to discourage miners from dishonest forks.
Fortunately, since DPoS blocks are mined by pre-determined miners (through vot-
ing and scheduling), long-range attacks are highly improbable since forking would
require more committee members to work in agreement. However, a node could
recreate a chain of blocks by using a different genesis block. This alternative chain
is easily discardable since there is only one correct genesis block.

o Why not tax everyone’s balance at the beginning of a new epoch instead of resorting
to a complete reset? Uniform taxing is meaningless since it would simply maintain
the power balances already established in the previous epoch. Progressive taxing
is vulnerable to sybil attacks because nodes with high stakes can split their stake
across multiple sybil nodes every time before a new epoch, essentially preserving
their influence over epochs.

o Why are old tokens redeemed block by block in the next epoch? Without a limit on
token redeeming rate, some nodes can earn back the allowed percentage of their old
balances faster than others, thus recreating the long-term power imbalance issue
the new epoch is supposed to address.

o Why are storage providers not rewarded through inflation for offering free storage
at epoch bootstrap time? Rewarding storage providers with inflation for free storage
deals may seem like a good way to bootstrap a new epoch. However, doing so makes

12

the system vulnerable to sybil attacks where storage providers pose as posters and
submit large numbers of free PostRequests, in the hope of being matched with
those PostRequests and gain inflation tokens.

o Why can storage providers redeem old tokens by storing free storage? At the start
of a new epoch, we do not want miners to be the only nodes earning tokens in the
system. Therefore, we allow storage providers to redeem old tokens by storing free
posts in addition to paid ones. Sybil attacks have little effect because the system
limits the redeeming rate.

o Why must candidates have > 1/s stake in their votes to be elected as miners? In a
situation where the mining committee has very few miners (e.g. in the early stage
of a new forum when there is a lack of miner candidates), imposing a minimum
stake in votes for elected miners prevents hostile take-overs by opportunistic nodes.

e How do we deal with malicious miners? Timbre assumes that the majority of the
miner committee is honest; otherwise, DPoS consensus would break down. Still, a
minority of miners could be motivated to eliminate competition from other candi-
dates by censoring votes. They could also censor posts by dropping PostRequests
or favor certain storage providers (perhaps themselves) over others. However, since
nodes are able to detect malicious behavior, as long as there is an honest majority,
votes will still be correctly recorded and the malicious miners will be voted out.

Content Management Analysis

o Why must a storage provider allocate a chunk for each thread? By requiring the
storage provider to allocate a chunk, miners are able to directly send future reply
posts to the same storage provider until the chunk is full. It simplifies the process
of matching a post to a storage provider, and it reduces thread fragmentation in
the network. Since we assume a retrieval-by-thread forum access pattern, storing
posts of the same thread at the same storage provider makes retrieval much more
efficient.

o What happens if a chunk of storage never gets filled? This is indeed a possibility
since only popular threads can generate enough replies to fill a chunk. Therefore,
a significant portion of the storage provider’s committed storage could be unused.
Once the storage provider’s committed storage reaches its total capacity, this in-
efficiency becomes an issue because although the storage provider still has plenty
of unused storage, the unused storage cannot be used to allocate chunks for new
deals. In this case, a conservative storage provider would simply wait for one of its
deals to expire before accepting a new deal.

o What if a storage provider “oversells” its storage? A more aggressive storage
provider that has a low used-storage-to-committed-storage ratio might oversell its
storage to overcome the inefficiency. In fact, the most aggressive strategy is to keep
accepting new deals until its used storage reaches its total capacity. However, such
a storage provider will fail to store incoming reply posts of threads for which it is
the primary storage provider. As a result, these threads are “dead” because our
protocol requires miners to send reply posts to the primary storage provider.

13

e [s it possible to punish a failing primary storage provider? If a primary storage
provider rejects incoming reply posts, then a miner may decide to match future
root posts with other storage providers. Therefore, an overselling storage provider
is risking its future income by maximizing its current income. Note that a primary
storage provider may also fail for reasons other than overselling. For instance, we
expect a significant portion of storage providers to be average forum users with
commercial desktop or laptop computers. It is unlikely for these computers to
remain powered on with stable internet connections all the time.

o What happens when two miners make overlapping deals due to network delay? Two
deals overlap if they share at least one post in common. It is indeed possible for
miners to make overlapping deals. Let A and B be two miners and suppose B is
scheduled to produce a block after A does. If B does not receive A’s block in time
due to network delays, then it might produce a block with many deals that overlap
with deals in the block that A produced. Once the network converges to a single
longest fork, only one deal out of all its overlapping deals will remain valid, and the
storage providers assigned to invalid deals may simply delete them.

o Why does sampling in the deal verification protocol use with a prescribed PRNG
seeded by block hash? By requiring the sampling to be done with a prescribed
PRNG with a public and unpredictable seed, the protocol prevents miners from
favoring certain storage providers over others.

Reward Analysis

o Why is a storage deal paid to its storage provider block by block? We need a storage
deal to be paid to its storage provider incrementally at each block in order to
enforce storage for the complete duration of the deal. If a storage deal is paid in
full to the storage provider when it is made, the system cannot deduct decibels from
the storage provider even if it betrays the deal in the future, since otherwise node
balances can never be fully determined and balance calculation becomes impossible.

o Why does the miner earn the transaction fees from each storage deal and retrieval
transaction? The transaction fee incentivizes the miner to include as many deals
and transactions in its block as possible within the block size limit, which helps
increase system throughput.

o Why does the miner also earn the transaction fee of storage deals block by block?
This way the system encourages the miner to choose reliable storage providers for
forum content.

o Why does the miner earn the verification reward for successful verifications only?
Although our Proof of Storage scheme ensures that storage is publicly verifiable,
the miner is still capable of producing a false-negative Verification by ignoring
a valid signed Proof. Since it is trivial to ignore valid signed Proof but impossible
to forge a valid Proof!, successful Verifications are essentially the only evidence
that the miner has fulfilled its deal verification duty. Therefore, the system rewards
the miner for successful verifications only.

!Unless the miner happens to also be the storage provider for the deal being verified. This issue will
be discussed in section 6.

14

o Why does the miner earn block rewards in addition to everything else? Mining is
critical in all blockchain systems, and the miner dedicates more resources in terms of
computation power and bandwidth than any other node during its slot. Therefore,
it is reasonable to provide block rewards to attract capable miners. In addition,
block rewards are essential for currency bootstrapping at system bootstrap and at
the start of each new epoch.

Future Work

Timbre is still a work in progress with many potential improvements to be made.

We have identified some vulnerabilities related to our current Proof of Storage scheme.
First, the Proof of Storage scheme cannot verify replication of storage. As a result, the
current Timbre system cannot enforce post replications for added redundancy. Moreover,
the Proof of Storage scheme suffers from a potential backdoor attack in Timbre, where
the miner assigns itself as a storage provider and is able to “pass” future verifications
because it has the private key used to generate the proof parameters. For the first
problem, Filecoin has proposed a Proof of Replication scheme [4] and open-sourced its
implementation, but further research is required before we can adopt it in our system.

Statistics should also be collected once we have a running implementation. It will help
us analyze how the system behaves under various conditions and also help nodes in the
network make more intelligent decisions. Useful statistics include node uptime, network
stability, mining quality and many more.

Finally, everything discussed thus far is related to Timbre’s decentralized infrastruc-
ture. The implementation of Timbre infrastructure is under way, and the integration of
application-level features is an important next step. Such features include a user interface
and democratic content moderation, which will allow users to curate a more structured
and opinionated view of the forum.

References

[1] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability and constant
communication cost in cloud,” in Proceedings of the 2013 International Workshop on
Security in Cloud Computing, ser. Cloud Computing '13. New York, NY, USA: ACM,
2013, pp. 19-26. [Online]. Available: http://doi.acm.org/10.1145/2484402.2484408

2] D. Larimer, “DPoS Consensus Algorithm - The Missing White Pa-
per,” 2016. [Online]. Available: https://steemit.com/dpos/@dantheman/
dpos-consensus-algorithm-this-missing-white-paper

[3] A. D. Peris, J. M. Hern’ndez, and E. Huedo, “Evaluation of the Broadcast Operation
in Kademlia,” IEEE International Conference on Embedded Software and Systems,
2012.

[4] J. Benet, D. Dalrymple, and N. Greco, “Proof of Replication Technical Report
(WIP),” 2017.

15

http://doi.acm.org/10.1145/2484402.2484408
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper

	Abstract
	Introduction
	Paper Outline

	Timbre Design
	Roles
	Blockchain
	Block Structure
	Consensus
	Epochs

	Network
	Content Management
	Posts
	Storage
	Retrieval

	Economics
	Reward Types
	Balance calculation

	Protocol
	Posting Protocol
	Matching Protocol
	Verification Setup Protocol
	Deal Verification Protocol
	Block Propagation Protocol

	Analysis
	Blockchain Design Analysis
	Content Management Analysis
	Reward Analysis

	Future Work

